Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation
نویسندگان
چکیده
Hypomorphic mutations in the gene encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme, ALPL in human or Akp2 in mice, cause hypophosphatasia (HPP), an inherited metabolic bone disease also characterized by spontaneous seizures. Initially, these seizures were attributed to the impairment of GABAergic neurotransmission caused by altered vitamin B6 (vit-B6) metabolism. However, clinical cases in human newborns and adults whose convulsions are refractory to pro-GABAergic drugs but controlled by the vit-B6 administration, suggest that other factors are involved. Here, to evaluate whether neurodevelopmental alterations are underlying the seizures associated to HPP, we performed morphological and functional characterization of postnatal homozygous TNAP null mice, a model of HPP. These analyses revealed that TNAP deficient mice present an increased proliferation of neural precursors, an altered neuronal morphology, and an augmented neuronal activity. We found that these alterations were associated with a partial downregulation of the purinergic P2X7 receptor (P2X7R). Even though deficient P2X7R mice present similar neurodevelopmental alterations, they do not develop neonatal seizures. Accordingly, we found that the additional blockage of P2X7R prevent convulsions and extend the lifespan of mice lacking TNAP. In agreement with these findings, we also found that exogenous administration of ATP or TNAP antagonists induced seizures in adult wild-type mice by activating P2X7R. Finally, our results also indicate that the anticonvulsive effects attributed to vit-B6 may be due to its capacity to block P2X7R. Altogether, these findings suggest that the purinergic signalling regulates the neurodevelopmental alteration and the neonatal seizures associated to HPP.
منابع مشابه
Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels
Hypophosphatasia (HPP) is a rare heritable metabolic bone disease caused by hypomorphic mutations in the ALPL (in human) or Akp2 (in mouse) gene, encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme. In addition to skeletal and dental malformations, severe forms of HPP are also characterized by the presence of spontaneous seizures. Initially, these seizures were attributed to an i...
متن کاملPyridoxine-Responsive Seizures in Infantile Hypophosphatasia and a Novel Homozygous Mutation in ALPL Gene
Hypophosphatasia is a rare inherited disorder of bone and mineral metabolism caused by a number of loss-of-function mutations in the ALPL gene. It is characterized by defective bone and tooth mineralisation associated with low serum and bone alkaline phosphatase activity. The clinical presentation of this disease is extremely variable. For this reason, the diagnosis can be difficult and is ofte...
متن کاملTissue-nonspecific Alkaline Phosphatase Regulates Purinergic Transmission in the Central Nervous System During Development and Disease
Tissue-nonspecific alkaline phosphatase (TNAP) is one of the four isozymes in humans and mice that have the capacity to hydrolyze phosphate groups from a wide spectrum of physiological substrates. Among these, TNAP degrades substrates implicated in neurotransmission. Transgenic mice lacking TNAP activity display the characteristic skeletal and dental phenotype of infantile hypophosphatasia, as ...
متن کاملA Rare Case of Neonatal Hypophosphatasia: A Case Report
Hypophosphatasia is a rare hereditary disorder of bone metabolism.In this article, we presented the case of a male infant with a soft skull and short, deformed limbs at birth, followed by seizures and respiratory distress during admission in the neonatal intensive care unit (NICU). Prenatal ultrasound showed limb hypoplasia, skull hypomineralization, and polyhydramnios. Seizures occurred on day...
متن کاملAlterations of the electroencephalogram sub-bands amplitude during focal seizures in the pilocarpine model of epilepsy
Introduction: Temporal lobe epilepsy (TLE) is the most common and drug resistant epilepsy in adults. Due to behavioral, morphologic and electrographic similarities, pilocarpine model of epilepsy best resembles TLE. This study was aimed at determination of the changes in electroencephalogram (EEG) sub-bands amplitude during focal seizures in the pilocarpine model of epilepsy. Analysis of thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 25 شماره
صفحات -
تاریخ انتشار 2016